Query optimization part 1
Algebraic rewriting

Hans Philippi

August 5, 2024

Hans Philippi Algebraic rewriting

Query processing

From SQL query to result table ...
Let's have a look under the hood

Hans Philippi Algebraic rewriting 2/15

Query processing

[query in SQL|
1

lequivalent XRA-expression|

!

| modified XRA-expression|

J

|access strategy |

@ XRA stands for eXtended Relational Algebra, dealing with
multisets, sorting and aggregates

@ We will not go into detail with respect to step 1
@ In this lecture, we will focus on step 2

o We will deal with step 3 in another lecture

Hans Philippi Algebraic rewriting 3/15

Bags aka multisets

@ Set like collections allowing for duplicates
@ Some examples ...

Union:
{a,b,c}U{a,a,c,d} ={a,a,a,b,c,c,d}

Intersection:
{a,a,a,b,c,c,d} N{a,a, b,e} ={a,a, b}

Minus:
{3, a, a, b7 :c, d} - {37 a, ba e} = {37 :c, d}

Hans Philippi Algebraic rewriting 4/15

Extended projection

Extended projection supports simple expressions as projected
attributes

R TA+B (R)
A|B A | AplusB
114 1 5
2|5 2 7
3|6 3 9

Hans Philippi Algebraic rewriting 5/15

Projection may involve ordering: 7

1 ascending (default)
J descending

R 71814 (R)
A|B B A
113 3 5
2|6 3 4
413 3 1
513 6 2

Hans Philippi Algebraic rewriting 6/15

Grouping and aggregate functions

Symbol: T

Shopping

Store Product Price
.25
.52
.29
.95
.25
.79

AH Tomato polpa
Jumbo Linguine
Aldi | Tomato polpa

AH Mozzarella
Jumbo | Tomato polpa

AH Linguine

N NE~=, B~ NN

[Product,MIN(Price) (Shopping)
Product MinPrice

Tomato polpa 1.29
Linguine 2.52
Mozzarella 1.95

Hans Philippi Algebraic rewriting 7/15

Query processing and algebraic optimization

Basic ideas

@ Rationale: main-memory is limited; data traffic between
main-memory and external memory should be minimized
Unary operations (o,) are rather cheap
Selection is even cheaper if a suitable index is present

Binary operations, especially join-like operations, are expensive

Apply unary operations as early as possible to reduce the size
of the operands of binary operations

Size: number of tuples as well as number of attributes count

@ Many algebraic optimization rules are rules of thumb, but they
also might be based on cost models (see following lectures)

Hans Philippi Algebraic rewriting 8/15

Algebraic properties

In retrospect, some basic algebraic properties concerning real
numbers . ..
Commutativity

@ at+b=b+a

@ axb=>bxa

@ea—b#b—a
Associativity

e (a+b)+c=a+(b+c¢)

@ (axb)xc=ax(bxc)

e (a—b)—c#a—(b—2c)
Distributivity

@ ax(b+c)=axb+axc

eax(b—c)=axb—axc

Hans Philippi Algebraic rewriting 9/15

Algebraic rewriting

Note that the unary operators o and 7w generally can be calculated
by a single table scan

Cascading and commuting selections
0 05(04(R)) = 04q(0p(R)) = 0pnqg(R)

Cascading projections
] 7TL1(7TL2(R)) = 7T[_1(R) with condition L1 C [2

Commuting selections and projections
o m(0p(R)) = op(mL(R)) with condition attr(p) C L

Hans Philippi Algebraic rewriting 10/15

Commutativity and associativity of binary operators

e RUS=SUR
e RNS=SNR
o RxiS=S~xR

o (RUS)UT=RU(SUT)
e (RNS)NT=RN(SNT)
@ (RS)NT=Rx(SxT)

Hans Philippi Algebraic rewriting 11/15

The following rule plays a crucial role in query optimization,
formalizing the notion of “applying unary operators early”

® Tpinponps(RBS) = 0py(0p, (R) > 0,(5))

with conditions attr(p1) C attr(R), attr(p2) C attr(S)
Several other distributive rules are valid, for example

° 0,(RUS) =0p(R)U0,(S)

You will find more examples in the exercises

Hans Philippi Algebraic rewriting 12/15

Associativity and join order

Given the associativity of the join, we have a lot of possibilities to
calculate the result of long join chains

Take for example R<1 S < T <1 U, then we have ...

o (RxS)=T)x=U
@ R (S (T aU))
R ((Spxa T) V)
(R>1S) (T V)
Sxx((Rea T)xaU)

... although a natural join degenerates to a cartesian product if the
tables do not have any attributes in common

Hans Philippi Algebraic rewriting 13/15

Associativity and join order

Given the associativity of the join, we have a lot of possibilities to
calculate the result of long join chains Ry bt Ry b1 ... <1 R,

@ The number of possibilities grows exponentially with n

@ Determining an “optimal” solution is possible for limited
values of n using dynamic programming techniques

@ For larger values of n, heuristics are used

@ For the size of tables, we can adopt the product of the width
in bytes and the cardinality (number of tuples)

@ In another lecture, we will show how to estimate the size of a
join result of two tables, given the size of the operands

@ A common greedy heuristic determines the size of the join

result of each pair of two tables and iteratively chooses the
smallest one

Hans Philippi Algebraic rewriting 14 /15

This lecture is mainly based on chapter 16 from:

Database Systems, the Complete Book, 2nd edition
Garcia-Molina, Ullman & Widom

Hans Philippi Algebraic rewriting 15/15

