
Query optimization part 1
Algebraic rewriting

Hans Philippi

August 5, 2024

Hans Philippi Algebraic rewriting 1 / 15



Query processing

From SQL query to result table ...
Let’s have a look under the hood

Hans Philippi Algebraic rewriting 2 / 15



Query processing

XRA stands for eXtended Relational Algebra, dealing with
multisets, sorting and aggregates

We will not go into detail with respect to step 1

In this lecture, we will focus on step 2

We will deal with step 3 in another lecture

Hans Philippi Algebraic rewriting 3 / 15



Bags aka multisets

Set like collections allowing for duplicates

Some examples ...

Union:
{a, b, c} ∪ {a, a, c, d} = {a, a, a, b, c , c , d}

Intersection:
{a, a, a, b, c, c , d} ∩ {a, a, b, e} = {a, a, b}

Minus:
{a, a, a, b, c, c , d} − {a, a, b, e} = {a, c , c , d}

Hans Philippi Algebraic rewriting 4 / 15



Extended projection

Extended projection supports simple expressions as projected
attributes

R

A B

1 4

2 5

3 6

πA+B(R)

A AplusB

1 5

2 7

3 9

Hans Philippi Algebraic rewriting 5 / 15



Ordering

Projection may involve ordering: τ

↑ ascending (default)
↓ descending

R

A B

1 3

2 6

4 3

5 3

τ↑B↓A(R)

B A

3 5

3 4

3 1

6 2

Hans Philippi Algebraic rewriting 6 / 15



Grouping and aggregate functions

Symbol: Γ

Shopping

Store Product Price

AH Tomato polpa 2.25

Jumbo Linguine 2.52

Aldi Tomato polpa 1.29

AH Mozzarella 1.95

Jumbo Tomato polpa 2.25

AH Linguine 2.79

ΓProduct,MIN(Price)(Shopping)

Product MinPrice

Tomato polpa 1.29

Linguine 2.52

Mozzarella 1.95

Hans Philippi Algebraic rewriting 7 / 15



Query processing and algebraic optimization

Basic ideas

Rationale: main-memory is limited; data traffic between
main-memory and external memory should be minimized

Unary operations (σ, π) are rather cheap

Selection is even cheaper if a suitable index is present

Binary operations, especially join-like operations, are expensive

Apply unary operations as early as possible to reduce the size
of the operands of binary operations

Size: number of tuples as well as number of attributes count

Many algebraic optimization rules are rules of thumb, but they
also might be based on cost models (see following lectures)

Hans Philippi Algebraic rewriting 8 / 15



Algebraic properties

In retrospect, some basic algebraic properties concerning real
numbers . . .

Commutativity

a+ b = b + a

a ∗ b = b ∗ a
a− b ̸= b − a

Associativity

(a+ b) + c = a+ (b + c)

(a ∗ b) ∗ c = a ∗ (b ∗ c)
(a− b)− c ̸= a− (b − c)

Distributivity

a ∗ (b + c) = a ∗ b + a ∗ c
a ∗ (b − c) = a ∗ b − a ∗ c

Hans Philippi Algebraic rewriting 9 / 15



Algebraic rewriting

Note that the unary operators σ and π generally can be calculated
by a single table scan

Cascading and commuting selections

σp(σq(R)) = σq(σp(R)) = σp∧q(R)

Cascading projections

πL1(πL2(R)) = πL1(R) with condition L1 ⊆ L2

Commuting selections and projections

πL(σp(R)) = σp(πL(R)) with condition attr(p) ⊆ L

Hans Philippi Algebraic rewriting 10 / 15



Commutativity and associativity of binary operators

R ∪ S = S ∪ R

R ∩ S = S ∩ R

R ▷◁ S = S ▷◁ R

(R ∪ S) ∪ T = R ∪ (S ∪ T )

(R ∩ S) ∩ T = R ∩ (S ∩ T )

(R ▷◁ S) ▷◁ T = R ▷◁ (S ▷◁ T )

Hans Philippi Algebraic rewriting 11 / 15



Distributivity

The following rule plays a crucial role in query optimization,
formalizing the notion of “applying unary operators early”

σp1∧p2∧p3(R ▷◁ S) = σp3(σp1(R) ▷◁ σp2(S))

with conditions attr(p1) ⊆ attr(R), attr(p2) ⊆ attr(S)

Several other distributive rules are valid, for example

σp(R ∪ S) = σp(R) ∪ σp(S)

You will find more examples in the exercises

Hans Philippi Algebraic rewriting 12 / 15



Associativity and join order

Given the associativity of the join, we have a lot of possibilities to
calculate the result of long join chains

Take for example R ▷◁ S ▷◁ T ▷◁ U, then we have . . .

((R ▷◁ S) ▷◁ T ) ▷◁ U

R ▷◁ (S ▷◁ (T ▷◁ U))

R ▷◁ ((S ▷◁ T ) ▷◁ U)

(R ▷◁ S) ▷◁ (T ▷◁ U)

S ▷◁ ((R ▷◁ T ) ▷◁ U)

. . .

. . . although a natural join degenerates to a cartesian product if the
tables do not have any attributes in common

Hans Philippi Algebraic rewriting 13 / 15



Associativity and join order

Given the associativity of the join, we have a lot of possibilities to
calculate the result of long join chains R1 ▷◁ R2 ▷◁ . . . ▷◁ Rn

The number of possibilities grows exponentially with n

Determining an “optimal” solution is possible for limited
values of n using dynamic programming techniques

For larger values of n, heuristics are used

For the size of tables, we can adopt the product of the width
in bytes and the cardinality (number of tuples)

In another lecture, we will show how to estimate the size of a
join result of two tables, given the size of the operands

A common greedy heuristic determines the size of the join
result of each pair of two tables and iteratively chooses the
smallest one

Hans Philippi Algebraic rewriting 14 / 15



Literature

This lecture is mainly based on chapter 16 from:

Database Systems, the Complete Book, 2nd edition
Garcia-Molina, Ullman & Widom

Hans Philippi Algebraic rewriting 15 / 15


