Databases Relational algebra

Hans Philippi

Example database inspired by imdb.com

August 1, 2024

- fundamental query language
- based on set theory
- yardstick: relational completeness
- compositional: a query may be composed from subqueries
- procedural: ordering of operations
- concise: only five basic operators
- practical use: query optimization

Relational model: glossary

	Movie		
movid	title	year	rating
tt0469494	There Will Be Blood	2007	8,1
tt0086879	Amadeus	1984	8,4
tt0102926	The Silence of the Lambs	1991	8,6
tt0110413	Léon	1994	8,7
tt0078788	Apocalypse Now	1979	8,5

The *schema* of this *relation (table)* is: Movie(movid, title, year, rating) There are five *tuples (records, rows)*

There are four *attributes (fields)*: movid, title, year, rating

There are four *columns*, identified by an attribute, each containing five values

The *degree* of the relation Movie is four

We should regard these two relations to be identical, because relations are sets

Table1		Table2	
A	В	A	В
1	game	3	match
2	set	1	game
3	match	2	set

Please note that sets do not contain duplicates

Should we regard these two relations to be identical?

T	Table1		
A	A B		
1	game		
2 set			
3	3 match		

Table2	
В	A
game	1
set	2
match	3

Should we regard these two relations to be identical?

Table1		Table2	
Α	В	В	A
1	game	game	1
2	set	set	2
3	match	match	3

- From a practical point of view (query optimization), this is a desirable property
- We can define a tuple as a function from the set of attributes to the set of all possible data values, giving the desired property

Unary operator: selection σ_p

p is selection predicate

Actor			
personid	name	$birth_year$	
nm0000204	Natalie Portman	1982	
nm0000288	Christian Bale	1974	
nm0000358	Daniel Day-Lewis	1957	
nm0000201	Michelle Pfeiffer	1958	

$\sigma_{\it birth_year < 1960}$ (Actor)			
personid	name	$birth_year$	
nm0000358	Daniel Day-Lewis	1957	
nm0000201	Michelle Pfeiffer	1958	

Unary operator: selection with complex predicates

$$\sigma_{(\textit{birth_year} > 2000) \land (\textit{gender} = '\textit{female'})}(\texttt{Actor})$$

 $\sigma_{(country='Netherlands') \lor (country='Belgium')}$ (Actor)

Complex selection predicates are built with \land,\lor,\neg and brackets, but without quantors (\exists, \forall)

Unary operator: **projection** π_L

	Movie		
movid	title	year	rating
tt0049366	Invasion of the Body Snatchers	1956	7,8
tt0086879	Amadeus	1984	8,4
tt0077745	Invasion of the Body Snatchers	1978	7,4
tt0078788	Apocalypse Now	1979	8,5

$\pi_{\it title, year}$ (Movie)		
title	year	
Invasion of the Body Snatchers	1956	
Amadeus	1984	
Invasion of the Body Snatchers	1978	
Apocalypse Now	1979	

	Movie		
movid	title	year	rating
tt0049366	Invasion of the Body Snatchers	1956	7,8
tt0086879	Amadeus	1984	8,4
tt0077745	Invasion of the Body Snatchers	1978	7,4
tt0078788	Apocalypse Now	1979	8,5

$\pi_{\it title}$ (Movie)		
title		
Invasion of the Body Snatchers		
Amadeus		
Apocalypse Now		

Composition of operators

Composition of projection and selection

Actor			
personid	name	$birth_year$	
nm0000204	Natalie Portman	1982	
nm0000288	Christian Bale	1974	
nm0000358	Daniel Day-Lewis	1957	
nm0000201	Michelle Pfeiffer	1958	

$\pi_{name,birth_year}(\sigma_{birth_year < 1960}(Actor))$			
name	$birth_year$		
Daniel Day-Lewis	1957		
Michelle Pfeiffer	1958		

Union

Binary operator: **union** \cup

Actor				
personid	name	$birth_year$		
nm0000531	Frances McDormand	1957		
nm0000233	Quentin Tarantino	1963		
nm0000358	Daniel Day-Lewis	1957		

Director			
personid	name	$birth_year$	
nm0000759	Paul Thomas Anderson	1970	
nm0000941	Kathryn Bigelow	1951	
nm0000233	Quentin Tarantino	1963	

Binary operator: **union** \cup

Actor \cup Director			
personid	name	$birth_year$	
nm0000941	Kathryn Bigelow	1951	
nm0000531	Frances McDormand	1957	
nm0000358	Daniel Day-Lewis	1957	
nm0000759	Paul Thomas Anderson	1970	
nm0000233	Quentin Tarantino	1963	

Binary operator: difference -

Actor - Director			
personid	name	birth_year	
nm0000531	Frances McDormand	1957	
nm0000358	Daniel Day-Lewis	1957	

Binary operator: intersection \cap

personid name		$birth_year$
nm0000233	Quentin Tarantino	1963

Binary operator: Cartesian product \times

R		
A	В	С
a	11	b
b	43	с

S	
C D	
b	25
с	41
b	21

$R \times S$			
A	В	С	D
a	11	b	25
a	11	с	41
a	11	b	21
b	43	b	25
b	43	с	41
b	43	b	21

Binary operator: **theta-join** \bowtie_{θ}

	R		S
A	В	С	D
a	11	b	55
b	43	с	31
с	37	b	21

 $\boldsymbol{\theta}$ is matching condition

$R \bowtie_{\theta} S$			
Α	В	С	D
b	43	b	21
с	37	с	31

 $\theta: (R.A = S.C) \land (R.B > S.D)$

Binary operator: natural join 🖂

R S В А А D 11 b 55 а 43 b 31 С 37 21 b С d 17 default matching condition

R 🖂 S			
A B D			
b	43	55	
b	43	21	
с	37	31	

Book (bid, title, author) Reader (rid, name, address, city) Loan (bid, rid, ldate, rdate)

Q1: Give the names of the readers who borrowed at least one book of $\operatorname{Dickens}$

 $^1\mbox{For simplicity},$ we assume that every title has only one copy in our library

```
Book (bid, title, author)
Reader (rid, name, address, city)
Loan (bid, rid, ldate, rdate)
```

Q1: Give the names of the readers who borrowed at least one book of $\operatorname{Dickens}$

 $\pi_{name}(Reader \bowtie (Loan \bowtie (\sigma_{author="Dickens"} Book)))$

```
Book (bid, title, author)
Reader (rid, name, address, city)
Loan (bid, rid, ldate, rdate)
```

Q1: Give the names of the readers who borrowed at least one book of Dickens

 $\pi_{name}(Reader \bowtie (Loan \bowtie (\sigma_{author="Dickens"} Book)))$

... but what about this one?

 $\pi_{name}(\sigma_{author="Dickens"}(Reader \bowtie Loan \bowtie Book))$

Book (bid, title, author) Reader (rid, name, address, city) Loan (bid, rid, ldate, rdate)

 $\ensuremath{\mathsf{Q2:}}$ Give the names of the readers who never borrowed a book of Dickens


```
Book (bid, title, author)
Reader (rid, name, address, city)
Loan (bid, rid, ldate, rdate)
```

 $\ensuremath{\mathsf{Q2:}}$ Give the names of the readers who never borrowed a book of Dickens

 $\pi_{name}(Reader \bowtie (Loan \bowtie (\sigma_{author} \neq "Dickens" Book)))$

Note that this attempt fails. What does this expression mean?

```
Book (bid, title, author)
Reader (rid, name, address, city)
Loan (bid, rid, ldate, rdate)
```

 $\ensuremath{\mathsf{Q2:}}$ Give the names of the readers who never borrowed a book of Dickens

First step: the completely incorrect answer

 $\pi_{rid}(Loan \bowtie (\sigma_{author="Dickens"} Book))$


```
Book (bid, title, author)
Reader (rid, name, address, city)
Loan (bid, rid, ldate, rdate)
```

 $\ensuremath{\mathsf{Q2:}}$ Give the names of the readers who never borrowed a book of Dickens

Second step: take the complement of the first step

 $\pi_{rid}(Reader) - \pi_{rid}(Loan \bowtie (\sigma_{author="Dickens"} Book))$

To project on the names, a final join with Reader is required

Book (bid, title, author) Reader (rid, name, address, city) Loan (bid, rid, ldate, rdate)

Q3: Give the names of the readers who borrowed only $\mathsf{Dickens}\text{-}\mathsf{books}$

```
Book (bid, title, author)
Reader (rid, name, address, city)
Loan (bid, rid, ldate, rdate)
```

Q3: Give the names of the readers who borrowed only Dickens-books

The answer only requires a minor modification of Q2

 $\pi_{rid}(Reader) - \pi_{rid}(Loan \bowtie (\sigma_{author} \neq "Dickens" Book))$

Book (bid, title, author) Reader (rid, name, address, city) Loan (bid, rid, ldate, rdate)

Q4: Give the names of the readers who borrowed all Dickens-books

???

Division

Binary operator: division \div

Book (bid, title, author) Reader (rid, name, address, city) Loan (bid, rid, ldate, rdate)

Q4: Give the names of the readers who borrowed all Dickens-books

```
Book (bid, title, author)
Reader (rid, name, address, city)
Loan (bid, rid, ldate, rdate)
```

Q4: Give the names of the readers who borrowed all Dickens-books

```
\ldots \div \pi_{bid}(\sigma_{author="Dickens"}Book)
```



```
Book (bid, title, author)
Reader (rid, name, address, city)
Loan (bid, rid, ldate, rdate)
```

Q4: Give the names of the readers who borrowed all Dickens-books

 $\pi_{rid,bid}(Loan) \div \pi_{bid}(\sigma_{author="Dickens"}Book)$


```
Book (bid, title, author)
Reader (rid, name, address, city)
Loan (bid, rid, ldate, rdate)
```

Q4: Give the names of the readers who borrowed all Dickens-books

 $Loan \div \pi_{bid}(\sigma_{author="Dickens"}Book)$

Why does this attempt fail? And what is the meaning of this expression?

Unary operators: assignment & renaming

$$T := < alg_expr >$$

$$T[A_1, ..., A_n] := \langle alg_expr \rangle$$

Unary operators: renaming on the fly

$$ho(T)(< alg_expr >)$$

 $ho(T, A_1, ..., A_n)(< alg_expr >)$

assignment & renaming examples:

 $Oldmovies1 := \pi_{movid,title} (\sigma_{year<1930}(Movie))$ $Oldmovies2[omid, omtitle] := \pi_{movid,title} (\sigma_{year<1930}(Movie))$

on the fly renaming within an expression:

 $\ldots \bowtie \rho(\textit{Oldmovies}, \textit{omid}, \textit{omtitle})(\pi_{\textit{movid}, \textit{title}} (\sigma_{\textit{year} < 1930}(\textit{Movie})))$

```
Book (bid, title, author)
Reader (rid, name, address, city)
Loan (bid, rid, ldate, rdate)
```

Q5: Give the names of the readers who borrowed at least two different $\mathsf{Dickens\text{-}books}$

MonetDB: DBMS using MAL, a dialect of relational algebra

- developed at CWI, Amsterdam
- main-memory approach
- platform for analytical databases
- outperforms several commercial systems
- MAL is intermediate language for query processing
- SQL queries are translated to MAL and optimized
- *Pathfinder:* XQUERY queries are translated to MAL and optimized

Overview of algebra

Overview unary operators

- selection $\sigma_p(R)$
- projection $\pi_L(R)$
- renaming $\rho(R)$

Overview binary operators

- union $R \cup S$
- difference R S
- intersection $R \cap S$
- cartesian product $R \times S$
- theta-join $R \bowtie_{\theta} S$
- natural join $R \bowtie S$
- division $R \div S$

p is selection predicate
 L is projection set
 or using assignment

schema compatibility schema compatibility schema compatibility

 $\boldsymbol{\theta}$ is matching condition

schema requirements