Indexing techniques for databases

Hans Philippi

December 16, 2024

Hans Philippi Indexing techniques for databases 1/13

Why indexing?

@ Suppose you are a police officer
@ A suspicious car is passing by at high speed
@ You want to check the license plate

Hans Philippi Indexing techniques for databases 2/13

Why indexing?

Around 10.000.000 cars in the Netherlands

Query: search a car based on license plate

Assumptions:

o A tuple (record) takes 400 bytes
e A hard disk block contains 8 kbyte, so we have 20 tuples on a
block

o A disk 10 takes 5 msec (some speedup by clustering)
Maximum search time (complete table scan)
10.000.000 / 20 = 500.000 disk 10

Search time : 2500 sec ~ 42 minutes

Required search time : < 1 sec

Hans Philippi Indexing techniques for databases 3/13

Memory characteristics (figures from 2024)

Main memory
@ Typical size : 8 — 256 GB
@ Access time: 100 nsec (10~ sec)
e Volatile
Harddisk (block size: 4 — 32 kbyte)
o Typical size: 4 — 14 TB
@ Access time: 5—10 msec (1072 sec)
@ Some speedup possible with clustering
@ Non-volatile
SSD
o Typical size : 256 GB — 8 TB
@ Access time: 0,1 msec (107 sec)

(expensive)

@ Non-volatile

Hans Philippi Indexing techniques for databases 4/13

@ Indexing enables a quick table search, based on the value of a
specific attribute

@ Indexing also supports query processing and optimization

@ Indexing supports primary key maintenance and uniqueness
constraints (other candidate keys)

@ Syntax for SQL DDL:

CREATE INDEX Person_dob_ndx

ON Person (date_of_birth);

CREATE UNIQUE INDEX Person_ppn_ndx
ON Person (passport_number) ;

Hans Philippi Indexing techniques for databases 5/13

Indexing techniques

@ Two fundamental techniques

e Indexing based on search trees
e Indexing based on hashing

@ Both techniques are applicable to main memory as well as
external memory

@ Both techniques deal with block sized memory traffic

Hans Philippi Indexing techniques for databases 6/13

@ The most well known search tree is the binary search tree
@ Search time is O(log(n)) for n entries, when balanced

@ Problem: maintaining balance under updates

Hans Philippi Indexing techniques for databases 7/13

@ Standard multiway search tree applied in relational databases
@ Sophisticated updating techniques to keep it balanced

e Guarantees at least 50% filling of nodes

@ Nodes correspond to disk blocks

3]
]|
7] 23]31] 43
ﬁ,///lll r“/ym\\
(2[5 s] [7 1]] [3[u7]a] [23]29 31]37]41] [43]47]

NE: ENNRENNEE:NNNECNNE
s e

Source: Garcia-Molina e.a: Database Systems, The Complete Book

Hans Philippi Indexing techniques for databases 8/13

@ Lowest level contains all attribute values and pointers to
corresponding tuples
@ Lowest level contains sibling pointers supporting range queries

|
| ll
7||ﬂ K7[%1@3
I LI
om0
T e P P A

weoiinneseiy e b el sodan

Source: Garcia-Molina e.a: Database Systems, The Complete Book

Hans Philippi Indexing techniques for databases 9/13

B-tree: an example

Attribute value: 4 byte integer

Pointer: 8 bytes

Block size: 16 kbyte

Content: 683 — 1365 entries per block

2 levels: minimum nr of entries = 466000

3 levels : minimum nr of entries = 318 million

4 levels : minimum nr of entries = 217 billion

Number of pointer traces is limited by [%/og(n)], with
k = 683

Search time in our example: << 1 sec

Hans Philippi Indexing techniques for databases 10/13

Hash table

@ Memory reservation of N buckets: virtual addresses 0..N-1
@ Hashfunction f
e Domain: all possible attribute values
e Codomain: 0..N-1
@ The hash function calculates the bucket address from the
current attribute value using f
@ Hashfunction f should distribute the addresses evenly
@ More info: https://en.wikipedia.org/wiki/Hash_function

Hans Philippi Indexing techniques for databases 11/13

 https://en.wikipedia.org/wiki/Hash_function

Hash table

keys buckets entries
000 [x| : :
| 501 7/'|x| Lisa Smith | 521-8976 |
John Smith —
002 [x
- , : p | John Smith | 521-1234 |
Lisa Smith —
151 | x
4
Sam Doe K | x| sandra Dee | 521-9655 |
153 | &
154 | x
Sandra Dee —
- E x| Ted Baker | 418-4165 |
253 | x
Ted Baker 554 =l
Jos] x| SamDoe | 521-5030 |

Source: https://en.wikipedia.org/wiki/Hash_function

Hans Philippi Indexing techniques for databases 12/13

 https://en.wikipedia.org/wiki/Hash_function

Final words

@ Hash indexing has a theoretical advantage: one disk access
versus ¥log(n) for B-tree

@ Hash indexing has a fundamental disadvantage: range queries
are not supported ...

@ ... while B-trees support range queries by horizontal links on
the lowest level

o The k of Xlog(n) is very large, so Klog(n) hardly exceeds 3 ...

@ ... while the root of the B-tree is (and possibly the second
level nodes are) often kept in main memory

@ Overall, the B-tree is the winner

Hans Philippi Indexing techniques for databases 13/13

