
Indexing techniques for databases

Hans Philippi

December 16, 2024

Hans Philippi Indexing techniques for databases 1 / 13



Why indexing?

Suppose you are a police officer

A suspicious car is passing by at high speed

You want to check the license plate

Hans Philippi Indexing techniques for databases 2 / 13



Why indexing?

Around 10.000.000 cars in the Netherlands

Query: search a car based on license plate

Assumptions:

A tuple (record) takes 400 bytes
A hard disk block contains 8 kbyte, so we have 20 tuples on a
block
A disk IO takes 5 msec (some speedup by clustering)

Maximum search time (complete table scan)

10.000.000 / 20 = 500.000 disk IO

Search time : 2500 sec ≈ 42 minutes

Required search time : < 1 sec

Hans Philippi Indexing techniques for databases 3 / 13



Memory characteristics (figures from 2024)

Main memory

Typical size : 8 − 256 GB

Access time: 100 nsec (10−7 sec)

Volatile

Harddisk (block size: 4 − 32 kbyte)

Typical size : 4 − 14 TB

Access time: 5−10 msec (10−2 sec)

Some speedup possible with clustering

Non-volatile

SSD (expensive)

Typical size : 256 GB − 8 TB

Access time: 0,1 msec (10−4 sec)

Non-volatile

Hans Philippi Indexing techniques for databases 4 / 13



Indexing

Indexing enables a quick table search, based on the value of a
specific attribute

Indexing also supports query processing and optimization

Indexing supports primary key maintenance and uniqueness
constraints (other candidate keys)

Syntax for SQL DDL:

CREATE INDEX Person dob ndx

ON Person (date of birth);

CREATE UNIQUE INDEX Person ppn ndx

ON Person (passport number);

Hans Philippi Indexing techniques for databases 5 / 13



Indexing techniques

Two fundamental techniques

Indexing based on search trees
Indexing based on hashing

Both techniques are applicable to main memory as well as
external memory

Both techniques deal with block sized memory traffic

Hans Philippi Indexing techniques for databases 6 / 13



Search trees

The most well known search tree is the binary search tree

Search time is O(log(n)) for n entries, when balanced

Problem: maintaining balance under updates

Hans Philippi Indexing techniques for databases 7 / 13



B-tree

Standard multiway search tree applied in relational databases

Sophisticated updating techniques to keep it balanced

Guarantees at least 50% filling of nodes

Nodes correspond to disk blocks

Source: Garcia-Molina e.a: Database Systems, The Complete Book

Hans Philippi Indexing techniques for databases 8 / 13



B-tree

Lowest level contains all attribute values and pointers to
corresponding tuples

Lowest level contains sibling pointers supporting range queries

Source: Garcia-Molina e.a: Database Systems, The Complete Book

Hans Philippi Indexing techniques for databases 9 / 13



B-tree: an example

Attribute value: 4 byte integer

Pointer: 8 bytes

Block size: 16 kbyte

Content: 683 − 1365 entries per block

2 levels: minimum nr of entries = 466000

3 levels : minimum nr of entries = 318 million

4 levels : minimum nr of entries = 217 billion

Number of pointer traces is limited by dk log(n)e, with
k = 683

Search time in our example: << 1 sec

Hans Philippi Indexing techniques for databases 10 / 13



Hash table

Memory reservation of N buckets: virtual addresses 0..N-1

Hashfunction f

Domain: all possible attribute values
Codomain: 0..N-1

The hash function calculates the bucket address from the
current attribute value using f

Hashfunction f should distribute the addresses evenly

More info: https://en.wikipedia.org/wiki/Hash_function

Hans Philippi Indexing techniques for databases 11 / 13

 https://en.wikipedia.org/wiki/Hash_function


Hash table

Source: https://en.wikipedia.org/wiki/Hash_function

Hans Philippi Indexing techniques for databases 12 / 13

 https://en.wikipedia.org/wiki/Hash_function


Final words

Hash indexing has a theoretical advantage: one disk access
versus k log(n) for B-tree

Hash indexing has a fundamental disadvantage: range queries
are not supported ...

... while B-trees support range queries by horizontal links on
the lowest level

The k of k log(n) is very large, so k log(n) hardly exceeds 3 ...

... while the root of the B-tree is (and possibly the second
level nodes are) often kept in main memory

Overall, the B-tree is the winner

Hans Philippi Indexing techniques for databases 13 / 13


