
Query processing part 2
Algorithms

Hans Philippi

December 5, 2024

Hans Philippi Query processing 1 / 50

Prequired knowledge

Prerequired knowledge:

indexing techniques (lecture)

external sorting (lecture)

Query processing part 1: algebraic optimization (lecture)

Hans Philippi Query processing 2 / 50

Global view

We will not go into detail with respect to step 1

The lecture on algebraic optimization deals with step 2

We will now focus on step 3

Hans Philippi Query processing 3 / 50

Hardware characteristics of memory (2024)

internal memory SSD hard disk

typical size 16-64 GB 1 TB 8 TB

access time 100 nsec 0.1 msec 8 msec

volatile yes no no

Disk IO is block (page) based; typical block size is 8 - 256 kB

For our analysis, we suppose that tables are stored in an
unordered collections of blocks

Random access time can be minimized by indexing techniques

Average access time can be enhanced by clustering

Hans Philippi Query processing 4 / 50

Hardware characteristics of memory

internal memory SSD hard disk

typical size 16-64 GB 1 TB 8 TB

access time 100 nsec 0.1 msec 8 msec

volatile yes no no

To analyze performance of database access methods, we
ignore internal memory access and only count IO (i.e. the
number of disk accesses)

... although nowadays, analytical databases often are based on
main memory storage techniques

Hans Philippi Query processing 5 / 50

Processing a selection

S := σp(R)

p : A1 = c1 ∧ A2 = c2 ∧ . . . ∧ An = cn

Option 1: scan table R and apply predicate p to each tuple

Option 2: if possible, use an index on one of the attributes Ai

in p; check the retrieved tuples for the other selection
requirements

But what if R has more indices connected to attr(p)?

Using more than one index and calculating intersections is an
option, but more efficient solutions are available

Hans Philippi Query processing 6 / 50

Processing a selection

S := σp(R)

Option 2: if possible, use an index on one of the attributes in
p

But what if R has more than one index connected to attr(p)?

Selections on some attributes can be more selective than
others

Compare attributes birthdate (including year) and weight in
kg for people

The larger the number of values for an attribute, the higher
the selectivity of the selection for that attribute

Hans Philippi Query processing 7 / 50

Table statistics

How to deal with statistics of the results of an algebraic operator?

For each table R, we keep track of the number of tuples T (R)

For each table R, we keep track of the number of blocks
B(R) on disk that R resides in

In most cases, we know the tuple size in bytes, so we can
estimate B(R) from T (R)

In general, a disk block will contain several tuples

For each table R and each attribute A in attr(R), we keep
track of V (R,A), i.e. the number of different values in πA(R)

Hans Philippi Query processing 8 / 50

Table statistics: example

Bike

bike id type frame gear

16531 xlite aluminium 105

16647 xlite carbon ultegra

16648 xlite carbon dura-ace

23956 reveal aluminium 105

23957 reveal aluminium ultegra

T (Bike) = 5

B(Bike) = ?, depends on ratio block size vs tuple size

V (Bike, type) = 2;V (Bike, frame) = 2;V (Bike, gear) = 3

V (Bike, bike id) = 5; equals T (Bike), because bike id is
primary key

Hans Philippi Query processing 9 / 50

Processing a selection

S := σp(R)

Option 2: if possible, use an index on one of the attributes in
p

But what if R has two indexed attributes: A and B?

Choose the index on A if V (R,A) ≥ V (R,B), else otherwise

Hans Philippi Query processing 10 / 50

Result estimations

S := σA=c(R)

T (S) ≈ T (R)/V (R,A)

B(S) can be estimated from T (S), given the ratio block size
vs tuple size

V (S ,A) = 1

Estimating V (S ,B) for other attributes B in attr(S) is more
tricky, but often unneccessary

Hans Philippi Query processing 11 / 50

Table statistics: histograms

S := σA=c(R)

Compare city = ‘Amsterdam‘ with city = ‘Giethoorn‘

The distribution of V (R,A) may be very uneven

Refinement: histograms of value frequencies

Example: attribute weight in kg for table Patient in a hospital

Patient: weight

value ... 70 71 72 73 74 75 76 77 78 ...

freq ... 1 3 4 7 5 3 4 2 2 ...

Hans Philippi Query processing 12 / 50

Table statistics: histograms

Patient: weight

value ... 70 71 72 73 74 75 76 77 78 ...

freq ... 1 3 4 7 5 3 4 2 2 ...

Possible problem: size of statistics database

Technique: interval histograms

Patient: weight

value ... 71 - 74 75 - 78 ...

freq ... 19 11 ...

Expected number of hits for weight = 72 equals 4.75

Expected number of hits for weight = 77 equals 2.75

Hans Philippi Query processing 13 / 50

Table statistics: maintenance

Patient: weight

value ... 70 71 72 73 74 75 76 77 78 ...

freq ... 1 3 4 7 5 3 4 2 2 ...

Problem: maintenance of statistics database

Observation: statistics do not need to be 100% correct

Option: less frequent (partial) updating

In case of extreme large databases, analyzing a small snapshot
of the database in advance, to obtain statistics, is a possible
technique

Hans Philippi Query processing 14 / 50

Join estimations

U := R ./ S

Suppose we have one join attribute: A

We will denote this situation by U := R ./A S

Available statistics: T (R),T (S),V (R,A),V (S ,A)

Can we estimate T (U)?

A good estimation for T (U) is required when choosing
between different join methods

A good estimation for T (U) is required when determining a
join order for a join chain R1 ./ R2 .// Rn

Hans Philippi Query processing 15 / 50

Join estimations

R

A B ...

...

327

...

S

A C ...

...

327

...

...

327

...

Let us fix our attention on a specific tuple t in R having
A-value 327

The estimated number of matching tuples for T in S equals
T (S)/V (S ,A)

This results in T (U) = T (R)T (S)/V (S ,A)

Hans Philippi Query processing 16 / 50

Join estimations

S

A C ...

...

327

...

R

A B ...

...

327

...

...

327

...

Let us apply a modest feeling of symmetry

The estimated number of matching tuples in R equals
T (R)/V (R,A)

This results in T (U) = T (S)T (R)/V (R,A)

Hans Philippi Query processing 17 / 50

Join estimations

U := R ./A S

We have two estimations for T (U)

T (U) = T (R)T (S)/V (S ,A)

T (U) = T (R)T (S)/V (R,A)

We choose the minimum value of these two estimations

Rationale: joins are in most cases asymmetric

Special case: R[A] is primary key and S [A] is foreign key

Then: πAS ⊆ πAR, V (R,A) = T (R) and T (U) = T (S)

Hans Philippi Query processing 18 / 50

Join algorithms

U := R ./A S

When analyzing performance, we will estimate the number of
disk accessess (IO)

Recall that an estimation of T (R) also gives you an
estimation of B(R)

We have the horrible feeling that the number of IO’s is
proportional to T (R)T (S) ...

... or at least to B(R)B(S)

But we will see that O(B(R) + B(S)) is feasible!

When comparing algorithms, we will ignore the IO of writing
the final result table

Hans Philippi Query processing 19 / 50

Join algorithms

U := R ./A S

General assumption: we have a main memory buffer size of M
blocks to process joins

... although we silently suppose there is some extra buffer
space for collecting output data

We will discuss four join algorithms

1 Block nested loop

2 Index nested loop

3 Sort-Merge join

4 Hash join

Hans Philippi Query processing 20 / 50

Join algorithms: Block nested loop

Suppose S has the smallest number of blocks

Split S in chunks, each of size M − 1 blocks (at most)

foreach chunk Ci of M-1 blocks of S {
read Ci into main memory;

foreach block B of R {
read B into the free memory buffer;

check all possible combinations

of tuples t1 in chunk Ci and t2 in B2;

if (t1.A = t2.A)

write the join of these tuples to output;

}
}

Hans Philippi Query processing 21 / 50

Join algorithms: Block nested loop

Buffer space

block B

chunk Ci

blue = main memory

R

block B

S

chunk C1

chunk C2

chunk C3

chunk C4

Hans Philippi Query processing 22 / 50

Block nested loop: analysis

Each chunk Ci of S is read once; total IO for S is B(S)

The number of times the outer loop runs: dB(S)/(M − 1)e
For each run of the outer loop, we need B(R) disk accesses to
scan R

Total IO for both tables: B(S) + dB(S)/(M − 1)e ∗ B(R)

Now suppose B(S) < M, then IO = B(S) + B(R)

So if one operand of the join fits in main memory, block
nested loop is optimal

Note that we can improve this result if R and/or S is
clustered on disk

Hans Philippi Query processing 23 / 50

Index nested loop

Assumption: index on S .A

foreach block B of R {
foreach tuple t in B {
suppose t.A = a;

use the index to find all t2 in S with t2.A = a;

write the join of t with each t2 to output;

}
}

Hans Philippi Query processing 24 / 50

Index nested loop: analysis

c = cost of index access (roughly 2 or 3 for B-tree)

µ = average number of tuples found

µ ≈ T (S)/V (S ,A)

IO ≈ B(R) + (c + µ)T (R)

If A is primary key in S , µ = 1

This method might become interesting if the tuple size of R is
large with respect to the block size of R

Hans Philippi Query processing 25 / 50

Sort-merge join

The pseude code is given below

An elaborate example will follow

Note that any table R can be sorted in IO = 4B(R)

sort R on attribute A (if necessary);

sort S on attribute A (if necessary);

repeat {
read the leading blocks from R and S

containing the smallest common A-values;

join the tuples in these blocks;

}
until R is finished or S is finished

Hans Philippi Query processing 26 / 50

Sort-merge join: example

Initial situation

R

A B

a 13

b 27

a 94

c 33

c 56

c 29

c 83

b 76

a 39

...

S

A C

c 46

b 41

c 97

a 88

a 33

c 72

b 11

b 51

...

Hans Philippi Query processing 27 / 50

Sort-merge join: example

After sorting on join attribute A

R

A B

a 39

a 13

a 94

b 27

b 76

c 33

c 83

c 56

c 29

...

S

A C

a 33

a 88

b 51

b 14

b 11

c 97

c 46

c 72

...

Hans Philippi Query processing 28 / 50

Sort-merge join: example

Copy leading blocks of both tables to buffer space

R

A B

a 39

a 13

a 94

b 27

b 76

c 33

c 83

c 56

c 29

...

S

A C

a 33

a 88

b 51

b 14

b 11

c 97

c 46

c 72

...

R

A B

a 39

a 13

a 94

b 27

S

A C

a 33

a 88

b 51

b 14

Hans Philippi Query processing 29 / 50

Sort-merge join: example

Prepare partial join results in buffer space

Partial join results are added tot Result table on disk

R

A B

a 39

a 13

a 94

b 27

b 76

c 33

c 83

c 56

c 29

...

S

A C

a 33

a 88

b 51

b 14

b 11

c 97

c 46

c 72

...

AddToResult

A B C

a 39 33

a 39 88

a 13 33

a 13 88

a 94 33

a 94 88

Hans Philippi Query processing 30 / 50

Sort-merge join: example

Copy new leading blocks of both tables to buffer space

R

A B

a 39

a 13

a 94

b 27

b 76

c 33

c 83

c 56

c 29

...

S

A C

a 33

a 88

b 51

b 14

b 11

c 97

c 46

c 72

...

R

A B

b 27

b 76

c 33

c 83

c 56

S

A C

b 51

b 14

b 11

c 97

c 46

c 72

Hans Philippi Query processing 31 / 50

Sort-merge join: example

Prepare partial join results in buffer space (blue)

Partial join results are added tot Result table on disk

R

A B

a 39

a 13

a 94

b 27

b 76

c 33

c 83

c 56

c 29

...

S

A C

a 33

a 88

b 51

b 14

b 11

c 97

c 46

c 72

...

AddToResult

A B C

b 27 51

b 27 14

b 27 11

b 76 51

b 76 14

b 76 11

Hans Philippi Query processing 32 / 50

Sort-merge join

Note that the buffer space generally consists of a lot of
megabytes or even gigabytes

Due to the small example size, it is suggested we handle only
one join value in each iteration, but in reality, several join
values will be dealt with

We do not count for the cost of the join in main memory

In extreme cases, the amount of data dealing with one single
join value may exceed the buffer space

In that case, techniques inspired by two-phase external sorting
can be applied

Hans Philippi Query processing 33 / 50

Sort-merge join: analysis

Cost of sorting: 4(B(R) + B(S))

Two way merge scan: B(R) + B(S)

Total cost: 5(B(R) + B(S))

Note that this join method can be integrated with the merge
sort of both operands; in that case IO = 3(B(R) + B(S))

Two phase merge sort algorithms are applicable as long as
B(R) + B(S) ≤ M2

M2 is quite a lot

Hans Philippi Query processing 34 / 50

Hash join

We will prepare hash buckets for both tables R and S

Choose an appropriate size of M (number of buckets) for the
hash buckets, based on table statistics

Choose a hash function for the domain of A with codomain
0..M − 1

Each bucket has a buffer window to collect hashed tuples

Scan through R and send each tuple to the appropriate bucket

Scan through S and send each tuple to the appropriate bucket

After scanning R and S , load each corresponding couple of R
and S buckets into main memory and determine the join
results for the tuples in these buckets

Hash join works only for equi join

Hans Philippi Query processing 35 / 50

Hash join: example

Join R[A,B] with S [A,C]

hash function: h(A) = A div 10 1

R

A B

12 a

3 b

29 c

7 d

13 e

12 f

27 g

S

A C

29 h

7 i

12 j

8 k

28 l

12 m

1Not a very sophisticated hash function, but illustrative
Hans Philippi Query processing 36 / 50

Hash join: example

Create buckets for h(A) = 0, 1, 2, ...

R

A B

12 a

3 b

29 c

7 d

13 e

12 f

27 g

S

A C

29 h

7 i

12 j

8 k

28 l

12 m

R0

A B

7 d

3 b

R1

A B

12 a

13 e

12 f

R2

A B

29 c

27 g

S0

A C

7 i

8 k

S1

A C

12 j

12 m

S2

A C

28 l

29 h

Hans Philippi Query processing 37 / 50

Hash join: example

Read buckets for h(A) = 0 into buffer space

R0

A B

7 d

3 b

R1

A B

12 a

13 e

12 f

R2

A B

29 c

27 g

S0

A C

7 i

8 k

S1

A C

12 j

12 m

S2

A C

28 l

29 h

R0

A B

7 d

3 b

S0

A C

7 i

8 k

Hans Philippi Query processing 38 / 50

Hash join: example

Calculate joined tuples in buffer space

R0

A B

7 d

3 b

R1

A B

12 a

13 e

12 f

R2

A B

29 c

27 g

S0

A C

7 i

8 k

S1

A C

12 j

12 m

S2

A C

28 l

29 h

R0

A B

7 d

3 b

S0

A C

7 i

8 k

R0 ./ S0

A B C

7 d i

Hans Philippi Query processing 39 / 50

Hash join: example

Write joined tuples to the result table (buffered)

R0

A B

7 d

3 b

S0

A C

7 i

8 k

R0 ./ S0

A B C

7 d i

Result

A B C

7 d i

Hans Philippi Query processing 40 / 50

Hash join: example

Read buckets for h(A) = 1 into buffer space

R0

A B

7 d

3 b

R1

A B

12 a

13 e

12 f

R2

A B

29 c

27 g

S0

A C

7 i

8 k

S1

A C

12 j

12 m

S2

A C

28 l

29 h

R1

A B

12 a

13 e

12 f

S1

A C

12 j

12 m

Hans Philippi Query processing 41 / 50

Hash join: example

Calculate joined tuples in buffer space

R0

A B

7 d

3 b

R1

A B

12 a

13 e

12 f

R2

A B

29 c

27 g

S0

A C

7 i

8 k

S1

A C

12 j

12 m

S2

A C

28 l

29 h

R1

A B

12 a

13 e

12 b

S1

A C

12 j

12 m

R1 ./ S1

A B C

12 a j

12 a m

12 b j

12 a m

Hans Philippi Query processing 42 / 50

Hash join: example

Add joined tuples to the result table

R1

A B

12 a

13 e

12 b

S1

A C

12 j

12 m

R1 ./ S1

A B C

12 a j

12 a m

12 b j

12 b m

Result

A B C

7 d i

12 a j

12 a m

12 b j

12 b m

Hans Philippi Query processing 43 / 50

Hash join: example

And repeat this for all buckets

R2

A B

29 c

27 g

S2

A C

28 l

29 h

R2 ./ S2

A B C

29 c h

Result

A B C

7 d i

12 a j

12 a m

12 b j

12 b m

29 c h

Hans Philippi Query processing 44 / 50

Hash join: analysis

Note that the total size of the two hashed tables is roughly
B(R) + B(S)

The cost of scanning R: IO = B(R)

The cost of filling the hash buckets for R: IO ≈ B(R)

The cost of scanning S : IO = B(S)

The cost of filling the hash buckets for S : IO ≈ B(S)

Scanning all hash buckets to calculate resulting tuples:
IO ≈ B(R) + B(S)

We do not count for the cost of the join in main memory

We ignore writing the result

Overall cost: IO ≈ 3(B(R) + B(S))

Hans Philippi Query processing 45 / 50

Epilog: OLTP vs OLAP

Note that we often distinguish bnetween two kinds of
applications for database management systems: OLTP and
OLAP

OLTP stands for online transaction processing

A transaction oriented DBMS (production database) typically
supports processing high volumes of small updates
(commerce, banking, reservation systems)

Transactional integrity is of utmost importance

Schema design for production databases focuses heavily on
prevention of data redundancy and consistency
(normalization)

The amount of indices is limited to prevent update overhead,
but some are essential for performance

Hans Philippi Query processing 46 / 50

OLTP vs OLAP

Note that we often distinguish two kinds of applications for
database management systems: OLTP and OLAP

OLAP stands for online analytical processing

An analysis oriented DBMS (analytical database, data
warehouse) typically supports dealing with large and complex
queries

Analytical databases generally are created by taking snapshots
from production databases

These snapshots are extensively preprocessed

Analytical databases typically are fixed for some time and read
only

Therefore, analytical databases generally do not support
transaction processing

Hans Philippi Query processing 47 / 50

OLTP vs OLAP

An analysis oriented DBMS (analytical database, data
warehouse) typically supports dealing with large and complex
queries

Support by indices is abundant

Given the read only behaviour, data redundancy can be
applied where necessary (materialized views)

Analytical databases often comprise historical data

Main memory database technology is an interesting candidate
for analytical databases

Hans Philippi Query processing 48 / 50

OLTP and OLAP: example

A large, countrywide grocery store deals with millions of
transactions a day

An OLTP system supports all checkouts and payments

In most cases, transactions are connected to a known client

An OLAP system provides overviews of all sales regarding to a
certain period

Market analysts may identify trends with respect to specific
products, product groups, time periods, price development,
and so on ...

Hans Philippi Query processing 49 / 50

OLTP and OLAP: example

Market analysts may find opportunities for client directed
offerings
OLAP supports market basket analysis: product X is often
bought in combination with product Y
Market basket analysis has been one of the earliest challenges
of data mining
Find groups of articles that are often bought together

Transaction ID itemset
1 {wine, cheese, bread}
2 {cheese, bananas, wine }
3 {wine, strawberries, cheese}
4 {wine, cheese}
5 {diapers, beer, milk}

Hans Philippi Query processing 50 / 50

